A strategy to modulate the magnetic anisotropy of ultra-thin ferromagnets

Electrical control of the magnetism of novel two-dimensional ferromagnetic semiconductors could enable the development of new types of spintronic devices—electronic devices that leverage the intrinsic magnetic properties of electrons to transmit, store and process information.

To be technologically viable, these devices should operate at or close to room temperature. However, most existing layered ferromagnetic semiconductors exhibit Curie temperatures below 100 K. Moreover, the interplay between magnetic order and electrical charges in these materials systems remains largely unexplored.

Researchers at the National University of Singapore, University College London (UCL) and University of Science and Technology in Beijing recently proposed a new method to modulate the magnetic anisotropy of chromium germanium telluride, Cr2Ge2Te6, a layered ferromagnetic semiconductor. The findings presented in their paper, which was published in Nature Electronics, could have important implications for the development of a wide range of hybrid electronic devices.

“The idea of electrically controlling magnetism in a magnetic semiconductor, which is key to developing energy-efficient information processing and storage devices, has been around for decades,” Associate Professor Goki Eda, who led the team that carried out the experiments, told TechXplore. “However, the effect of electric fields on magnetism in most materials is too weak to be useful for real applications.”

To read the full article, click here.

Atomium-EISMD